Transcriptome and physiological analyses reveal new insights into delayed incompatibility formed by interspecific grafting

Author:

Liu Qiao,Wang Xiurong,Zhao Yang,Xiao Feng,Yang Yao

Abstract

AbstractPinus elliottii used as rootstock instead of homologous rootstock, have been proved to accelerate early growth of the scion (Pinus massoniana), for cultivation of large diameter wood. However, the basal diameter of scions in heterologous grafts was significantly smaller than self-graft 10 years later, according to field investigation, which was opposed to cultivation objectives. Although advantage of heterologous grafts has been reported, less is known about the long term effect of heterologous rootstock on scions of P. massoniana. The aim of present study was to investigate the mechanism of the above difference. Toward this aim, the growth traits and physiological characteristics of scions in the two graft groups were studied, and the underlying mechanism was preliminarily explored through transcriptome sequencing technology. Results showed that scions of heterologous grafts had less TSCA compared to self-grafts, while no significant difference of plant height, number of branches and canopy volume between two graft groups. Besides, scion leaves of heterologous grafts displayed higher antioxidant enzyme activity and lower chlorophyll content. And interactions between rootstocks and scions had also changed the mineral element composition of scion leaves. Compared with homologous grafts, scion leaves of heterologous grafts accumulated more K+, Mg2+ and Zn2+, but less Ca2+,which have been proved to be conducive to the growth of stem diameter of P. massoniana. Moreover, a comparative transcriptome analysis of two graft groups showed that DEGs between them were mainly caused by the specificity of rootstock. GO and KEGG analysis found that heterologous rootstock had different gene expression preferences, and the gene expression level between rootstocks and scions were significantly different, such as auxin auxin-related genes and stress responsive genes. That may imply that auxin pathway played an important role not only in grafting healing process, but also in maintaining the growth between scion and stock. Summary of all above results, we concluded that the long term effect of heterologous rootstock on scions may be unsatisfactory with the later rapidly growth of scion, probably due to delayed graft incompatibility between scion and stock of heterologous grafts. This study may remind us that the long-term growth of the scion deserves attention as well as the healing process, which could also provide a basis for delayed graft incompatibility.

Funder

National Natural Science Foundation of China

Science and Technology Talent Platform Project of Guizhou Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3