Artificial Light for Improving Tomato Recovery Following Grafting: Transcriptome and Physiological Analyses

Author:

Ding Xiaotao1,Miao Chen1ORCID,Li Rongguang2,He Lizhong1ORCID,Zhang Hongmei1,Jin Haijun1,Cui Jiawei1,Wang Hong1,Zhang Yongxue1ORCID,Lu Panling1,Zou Jun3,Yu Jizhu1,Jiang Yuping2,Zhou Qiang1

Affiliation:

1. Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China

2. College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China

3. College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

Grafting is widely used to enhance the phenotypic traits of tomatoes, alleviate biotic and abiotic stresses, and control soil-borne diseases of the scion in greenhouse production. There are many factors that affect the healing and acclimatization stages of seedlings after grafting. However, the role of light has rarely been studied. In this study, we compared the effects of artificial light and traditional shading (under shaded plastic-covered tunnels) on the recovery of grafted tomato seedlings. The results show that the grafted tomato seedlings recovered using artificial light had a higher healthy index, leaf chlorophyll content, shoot dry weight, and net photosynthetic rate (Pn) and water use efficiency (WUE) compared with grafted seedling recovered using the traditional shading method. Transcriptome analysis showed that the differentially expressed genes (DEGs) of grafted seedlings restored using artificial light were mainly enriched in the pathways corresponding to plant hormone signal transduction. In addition, we measured the endogenous hormone content of grafted tomato seedlings. The results show that the contents of salicylic acid (SA) and kinetin (Kin) were significantly increased, and the contents of indoleacetic acid (IAA) and jasmonic acid (JA) were decreased in artificial-light-restored grafted tomato seedlings compared with those under shading treatments. Therefore, we suggest that artificial light affects the morphogenesis and photosynthetic efficiency of grafted tomato seedlings, and it can improve the performance of tomato seedlings during grafting recovery by regulating endogenous hormone levels.

Funder

the Shanghai Science and Technology Committee Program

the Excellent Team Program of the Shanghai Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3