Synthesis of a novel porous organic polymer containing triazine and cyclohexanone rings as an efficient methyl red adsorbent from aqueous solutions

Author:

Ghanbari Javad,Mobinikhaledi Akbar

Abstract

AbstractIn this research, a new porous organic polymer based on triazine and cyclohexanone rings was synthesized via Schiff base condensation, and its performance as an adsorbent for the removal of Methyl Red dye from aqueous solution was investigated. The synthesized polymer was characterized by FT-IR, XRD, SEM, EDS, TEM, TGA, and BET analyses. Five important parameters of pH (4–10), contact time (10–120 min), adsorbent dose (5–10 mg), initial dye concentration (10–70 mg/L), and temperature (25–45 °C) were investigated to optimize the adsorption conditions. Solution pH of 4, contact time of 80 min, adsorbent dose of 8 mg, initial dye concentration of 50 mg/L, and temperature of 45 °C were obtained as the best conditions for the adsorption of methyl red dye. Two widely used Langmuir and Freundlich models were employed to investigate the adsorption isotherm, and the obtained data showed that the adsorption process follows the Langmuir isotherm with a correlation coefficient (R2 = 0.9784) which indicates monolayer adsorption. The achieved maximum adsorption capacity was 178.57 mg/g. Also, the results of kinetic studies indicate that the adsorption process follows the pseudo-second-order kinetic, which suggests that chemical interactions play an important role in dye removal. Furthermore, the results showed that the adsorption process of methyl red dye by polymer is endothermic.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3