Comprehensive evaluation of zeolite/marine alga nanocomposite in the removal of waste dye from industrial wastewater

Author:

Hamd Ahmed,Shaban Mohamed,Al-Senani Ghadah M.,Alshabanat Mashael N.,Al-Ghamdi Azza,Dryaz Asmaa Ragab,Ahmed Sayed A.,El-Sayed Refat,Soliman N. K.

Abstract

AbstractA systematic study integrating laboratory, analytical, and case study field trial was conducted to figure out the effective adsorbent that could be used for the removal of Congo red (CR) dye from industrial wastewater effluent. The ability of the zeolite (Z) to adsorb CR dye from aqueous solutions was evaluated after it was modified by the Cystoseira compressa algae (CC) (Egyptian marine algae). Zeolite, CC algae were combined together in order to form the new composite zeolite/algae composite (ZCC) using wet impregnation technique and then characterized by the aid of different techniques. A noticeable enhancement in the adsorption capacity of newly synthesized ZCC was observed if compared to Z and CC, particularly at low CR concentrations. The batch style experiment was selected to figure out the impact of various experimental conditions on the adsorption behavior of different adsorbents. Moreover, isotherms and kinetics were estimated. According to the experimental results, the newly synthesized ZCC composite might be applied optimistically as an adsorbent for eliminating anionic dye molecules from industrial wastewater at low dye concentration. The dye adsorption on Z and ZCC followed the Langmuir isotherm, while that of CC followed the Freundlich isotherm. The dye adsorption kinetics on ZCC, CC, and Z were agreed with Elovich, intra-particle, and pseudo-second-order kinetic models, correspondingly. Adsorption mechanisms were also assessed using Weber's intraparticle diffusion model. Finally, field tests showed that the newly synthesized sorbent has a 98.5% efficient in eliminating dyes from industrial wastewater, authorizing the foundation for a recent eco-friendly adsorbent that facilitate industrial wastewater reuse.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference77 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3