Lattice Boltzmann-based numerical analysis of nanofluid natural convection in an inclined cavity subject to multiphysics fields

Author:

Ibrahim Muhammad,Berrouk Abdallah S.,Saeed Tareq,Algehyne Ebrahem A.,Ali Vakkar

Abstract

AbstractThis research conducts a study of natural convection heat transfer (NCHT) in a nanofluid under a magnetic field (MF). The nanofluid is in a cavity inclined at an angle of 45°. The MF can take different angles between 0° and 90°. Radiative heat transfer is present in the cavity in volumetric form. There are two hot semicircles, similar to two half-pipes, on the bottom wall. The top wall is kept cold. The side walls and parts of the bottom wall, except the pipes, have been insulated. The lattice Boltzmann method has been used for the simulation. The studied parameters are the Rayleigh number (in the range 103–106), magnetic field angle, radiation parameter (in the range 0–2), and nanoparticle volume fraction (in the range 0–5%). The generated entropy has been studied as the NCHT. The results indicate that adding nanoparticles improves heat transfer rate (HTR). Moreover, the addition of volumetric radiation to the cavity enhances the Nusselt number by 54% and the generated entropy by 12.5%. With an augmentation in the MF angle from 0° to 90°, HTR decreases and this decrease is observed mostly at higher Rayleigh numbers. An augmentation in the Ra increases NCHT and entropy generation. Indeed, a rise in the Ra from 103 to 106 increases HTR by almost sixfold.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3