Comparative appraisal of mono and hybrid nanofluid flows comprising carbon nanotubes over a three-dimensional surface impacted by Cattaneo–Christov heat flux

Author:

Alharbi Khalid Abdulkhaliq M.,Ramzan Muhammad,Shahmir Nazia,Ghazwani Hassan Ali S.,Elmasry Yasser,Eldin Sayed M.,Bilal Muhammad

Abstract

AbstractCarbon nanotubes (CNTs) are nanoscale tubes made of carbon atoms with unique mechanical, electrical, and thermal properties. They have a variety of promising applications in electronics, energy storage, and composite materials and are found as single-wall carbon nanotubes (SWCNTs) and double-wall carbon nanotubes (DWCNTs). Considering such alluring attributes of nanotubes, the motive of the presented flow model is to compare the thermal performance of magnetohydrodynamic (MHD) mono (SWCNTs)/Ethylene glycol) and hybrid (DWCNTs- SWCNTs/Ethylene glycol) nanofluids over a bidirectional stretching surface. The thermal efficiency of the proposed model is gauged while considering the effects of Cattaneo-Christov heat flux with prescribed heat flux (PHF) and prescribed surface temperature (PST). The flow is assisted by the anisotropic slip at the boundary of the surface. The system of partial differential equations (PDEs) is converted into a nonlinear ordinary differential system by the use of similarity transformations and handled using the bvp4c numerical technique. To depict the relationship between the profiles and the parameters, graphs, and tables are illustrated. The significant outcome revealed that the fluid temperature rises in the scenario of both PST and PHF cases. In addition, the heat transfer efficiency of the hybrid nanoliquid is far ahead of the nanofluid flow. The truthfulness of the envisioned model in the limiting scenario is also given.

Funder

Umm Al-Qura University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3