On the generation of realistic synthetic petrographic datasets using a style-based GAN

Author:

Ferreira IvanORCID,Ochoa LuisORCID,Koeshidayatullah ArdiansyahORCID

Abstract

AbstractDeep learning architectures have transformed data analytics in geosciences, complementing traditional approaches to geological problems. Although deep learning applications in geosciences show encouraging signs, their potential remains untapped due to limited data availability and the required in-depth knowledge to provide a high-quality labeled dataset. We approached these issues by developing a novel style-based deep generative adversarial network (GAN) model, PetroGAN, to create the first realistic synthetic petrographic datasets across different rock types. PetroGAN adopts the architecture of StyleGAN2 with adaptive discriminator augmentation (ADA) to allow robust replication of statistical and esthetical characteristics and improve the internal variance of petrographic data. In this study, the training dataset consists of > 10,000 thin section images both under plane- and cross-polarized lights. Here, using our proposed novel approach, the model reached a state-of-the-art Fréchet Inception Distance (FID) score of 12.49 for petrographic images. We further observed that the FID values vary with lithology type and image resolution. The generated images were validated through a survey where the participants have various backgrounds and level of expertise in geosciences. The survey established that even a subject matter expert observed the generated images were indistinguishable from real images. This study highlights that GANs are a powerful method for generating realistic synthetic data in geosciences. Moreover, they are a future tool for image self-labeling, reducing the effort in producing big, high-quality labeled geoscience datasets. Furthermore, our study shows that PetroGAN can be applied to other geoscience datasets, opening new research horizons in the application of deep learning to various fields in geosciences, particularly with the presence of limited datasets.

Funder

College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3