Classification performance assessment for imbalanced multiclass data

Author:

Aguilar-Ruiz Jesús S.,Michalak Marcin

Abstract

AbstractThe evaluation of diagnostic systems is pivotal for ensuring the deployment of high-quality solutions, especially given the pronounced context-sensitivity of certain systems, particularly in fields such as biomedicine. Of notable importance are predictive models where the target variable can encompass multiple values (multiclass), especially when these classes exhibit substantial frequency disparities (imbalance). In this study, we introduce the Imbalanced Multiclass Classification Performance (IMCP) curve, specifically designed for multiclass datasets (unlike the ROC curve), and characterized by its resilience to class distribution variations (in contrast to accuracy or F$$_\beta$$ β -score). Moreover, the IMCP curve facilitates individual performance assessment for each class within the diagnostic system, shedding light on the confidence associated with each prediction—an aspect of particular significance in medical diagnosis. Empirical experiments conducted with real-world data in a multiclass context (involving 35 types of tumors) featuring a high level of imbalance demonstrate that both the IMCP curve and the area under the IMCP curve serve as excellent indicators of classification quality.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3