Prediction model and demonstration of regional agricultural carbon emissions based on Isomap–ACO–ET: a case study of Guangdong Province, China

Author:

Qi Yanwei,Liu Huailiang,Zhao Jianbo

Abstract

AbstractScientific analysis of regional agricultural carbon emission prediction models and empirical studies are of great practical significance to the realization of low-carbon agriculture, which can help revitalize and build up ecological and beautiful countryside in China. This paper takes agriculture in Guangdong Province, China, as the research object, and uses the extended STIPAT model to construct an indicator system for the factors influencing agricultural carbon emissions in Guangdong. Based on this system, a combined Isomap–ACO–ET prediction model combing the isometric mapping algorithm (Isomap), ant colony algorithm (ACO) and extreme random tree algorithm (ET) was used to predict agriculture carbon emissions in Guangdong Province under five scenarios. Effective predictions can be made for agricultural carbon emissions in Guangdong Province, which are expected to fluctuate between 11,142,200 tons and 11,386,000 tons in 2030. And compared with other machine learning and neural network models, the Isomap–ACO–ET model has a better prediction performance with an MSE of 0.00018 and an accuracy of 98.7%. To develop low-carbon agriculture in Guangdong Province, we should improve farming methods, reduce the intensity of agrochemical application, strengthen the development and promotion of agricultural energy-saving and emission reduction technologies and low-carbon energy sources, reduce the intensity of carbon emissions from agricultural energy consumption, optimize the agricultural planting structure, and develop green agricultural products and agro-ecological tourism according to local conditions. This will promote the development of agriculture in Guangdong Province in a green and sustainable direction.

Funder

National Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3