Author:
Selvaraj Pravinraj,Subramani Karthick,Srinivasan Brahadeeswaran,Hsu Che-Ju,Huang Chi-Yen
Abstract
AbstractThe dispersion of organic N-benzyl-2-methyl-4-nitroaniline (BNA) in nematic liquid crystals (LCs) is studied. BNA doping decreases the threshold voltage of cell because of the reduced splay elastic constant and increased dielectric anisotropy of the LC mixture. When operated in the high voltage difference condition, the BNA-doped LC cell has a fall time that is five times faster than that of the pure one because of the decrements in the threshold voltage of the cell and rotational viscosity of the LC mixture. The additional restoring force induced by the BNA’s spontaneous polarization electric field (SPEF) also assists to decrease the fall time of the LC cell. The decreased viscosity can be deduced from the decrements in phase transition temperature and associated order parameter of the LC mixture. Density functional theory calculation demonstrates that the BNA dopant strengthens the absorbance for blue light, enhances the molecular interaction energy and dipole moment, decreases the molecular energy gap, and thus increases the permittivity of the LC mixture. The calculation also shows that the increased dipole moment, polarizability, and polarizability anisotropy increase the dielectric anisotropy of the LC mixture, which agrees with the experimental results well. BNA doping has a promising application to the fields of LC devices and displays.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献