Numerical simulation of micro crack evolution and failure modes of limestone under uniaxial multi-level cyclic loading

Author:

Yin Yanjun,Hu Jianhua,Wen Guanping,Xu Xiao,Zeng Pingping

Abstract

AbstractDeep rock structures are often subjected to complex cyclic disturbances generated by earthquakes and blasting vibrations. The rocks will resist disturbance with multiple stress levels, and the research on mechanical response is still insufficient under such conditions. A series of multi-level cyclic loading experiments were subjected to limestone specimens to obtain the stress–strain relation and fracture behavior. This study explored the effect of amplitude and cycle times on rocks. A Discrete Element Method model of rock specimens was established in Particle Flow Code 2D (PFC2D). The simulation results are coincidental with the experiment results. The results show that loading with low cycles can strengthen the rock, but loading with high cycles will present deteriorated effect on the rock. In the numerical simulation test, the initial crack will appear earlier with the amplitude increase. More micro cracks will be induced as the number of cycles per level increases. Moreover, tensile cracks are mainly distributed around the specimen when shear cracks widely appear in the central area. With the increase of amplitude, failure modes with mixed shear and tensile cracks will become universal.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Central South University Postgraduate Independent Exploration and Innovation Project Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3