Numerical simulation of strength and failure analysis of heterogeneous sandstone under different loading rates

Author:

Zhu Weihao,Wang Feng,Mu Jun,Yin Dawei,Lu Lang,Chen Zetao

Abstract

AbstractNatural rock masses often contain heterogeneous structures with varying sizes, non-uniform distributions, and strengths, which influence the mechanical response characteristics and crack propagation modes under loading. Furthermore, heterogeneous structures can affect the stability of the rock mass, in serious cases, leading to geotechnical and mining engineering disasters. In the present work, a parallel-bond model (PBM)-based numerical simulation using Particle Flow Code (PFC) was carried out to study the strength and failure characteristics of sandstone specimens with heterogeneous structures under different loading rates. The results show that the peak strength increases with the increasing loading rate. In addition, all of the initial cracks occurred at the edges of the heterogeneous structures of specimens under different loading rates. The greater the loading rate, the greater the stress concentration degree at the edge of the heterogeneous structures, the greater the dissipated energy as the sandstone specimens with heterogeneous structures suffer damage, the more intense the acoustic emission activity, and the greater the damage degree of the specimens. The number of cracks generated in sandstone specimens with heterogeneous structures increases gradually with the increasing loading rate during the initial loading stage, and gradually decreases after the specimens are damaged. Cracks propagate and develop from the upper right region to the lower right region of the specimens, forming crack groups that rapidly penetrate the specimens, leading to failure. Under different loading rates, the final failure behavior of the sandstone specimens with heterogeneous structures changes from an inverted V-type to θ-type, then gradually evolves to O-type failure.

Funder

National Natural Science Foundation of China

Youth Innovation Team Development Plan of Colleges and Universities of Shandong Province

Science and Technology Plan Project of Guizhou Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3