Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments

Author:

Chmiel F. P.,Burns D. K.,Azor M.,Borca F.,Boniface M. J.,Zlatev Z. D.,White N. M.,Daniels T. W. V.,Kiuber M.

Abstract

AbstractShort-term reattendances to emergency departments are a key quality of care indicator. Identifying patients at increased risk of early reattendance could help reduce the number of missed critical illnesses and could reduce avoidable utilization of emergency departments by enabling targeted post-discharge intervention. In this manuscript, we present a retrospective, single-centre study where we created and evaluated an extreme gradient boosting decision tree model trained to identify patients at risk of reattendance within 72 h of discharge from an emergency department (University Hospitals Southampton Foundation Trust, UK). Our model was trained using 35,447 attendances by 28,945 patients and evaluated on a hold-out test set featuring 8847 attendances by 7237 patients. The set of attendances from a given patient appeared exclusively in either the training or the test set. Our model was trained using both visit level variables (e.g., vital signs, arrival mode, and chief complaint) and a set of variables available in a patients electronic patient record, such as age and any recorded medical conditions. On the hold-out test set, our highest performing model obtained an AUROC of 0.747 (95% CI 0.722–0.773) and an average precision of 0.233 (95% CI 0.194–0.277). These results demonstrate that machine-learning models can be used to classify patients, with moderate performance, into low and high-risk groups for reattendance. We explained our models predictions using SHAP values, a concept developed from coalitional game theory, capable of explaining predictions at an attendance level. We demonstrated how clustering techniques (the UMAP algorithm) can be used to investigate the different sub-groups of explanations present in our patient cohort.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3