Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis

Author:

He Bihua,Qiu Zheng

Abstract

IntroductionSepsis is a leading cause of death. However, there is a lack of useful model to predict outcome in sepsis. Herein, the aim of this study was to develop an explainable machine learning (ML) model for predicting 28-day mortality in patients with sepsis based on Sepsis 3.0 criteria.MethodsWe obtained the data from the Medical Information Mart for Intensive Care (MIMIC)-III database (version 1.4). The overall data was randomly assigned to the training and testing sets at a ratio of 3:1. Following the application of LASSO regression analysis to identify the modeling variables, we proceeded to develop models using Extreme Gradient Boost (XGBoost), Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) techniques with 5-fold cross-validation. The optimal model was selected based on its area under the curve (AUC). Finally, the Shapley additive explanations (SHAP) method was used to interpret the optimal model.ResultsA total of 5,834 septic adults were enrolled, the median age was 66 years (IQR, 54–78 years) and 2,342 (40.1%) were women. After feature selection, 14 variables were included for developing model in the training set. The XGBoost model (AUC: 0.806) showed superior performance with AUC, compared with RF (AUC: 0.794), LR (AUC: 0.782) and SVM model (AUC: 0.687). SHAP summary analysis for XGBoost model showed that urine output on day 1, age, blood urea nitrogen and body mass index were the top four contributors. SHAP dependence analysis demonstrated insightful nonlinear interactive associations between factors and outcome. SHAP force analysis provided three samples for model prediction.ConclusionIn conclusion, our study successfully demonstrated the efficacy of ML models in predicting 28-day mortality in sepsis patients, while highlighting the potential of the SHAP method to enhance model transparency and aid in clinical decision-making.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3