Dimensional stability and mechanical properties of extruded-compression biopolymer composites made from selected Nigerian grown wood species at varying proportions

Author:

Aina K. S.,Oladimeji A. O.,Agboola F. Z.,Oguntayo D. O.

Abstract

Abstract250 µm particle size of wood and polyethylene (PE) materials were compounded at mixing proportions of 60/40, 70/30, and 80/20 (with an increase in polymer to decrease in wood content) and extruded using a single screw extruder at a temperature range of 110–135 °C. The particles of Gmelina Arborea, Tectona grandis, Cordiamilleni, and Nauclea diderichii with recycled Polyethylene were compounded and compressed at 175 N/mm to produce biopolymer composites. The biopolymer composites were subjected to dimensional stability test at 24 h of the water soak method and the ability to withstand load-bearing capacity was investigated. The outcome of the results shows that extruded-compressive biopolymer composites had values ranging from 0.06–1.43 g/cm3, 0.38–3.41%, and 0.82–6.85% for observed density, water absorption, and thickness swelling at 24 h of a water soak test. The mechanical properties values ranged from 0.28 Nmm−2–21.35 Nmm−2 and 0.44–550.06 Nmm−2 for flexural modulus and strength; and 191.43 Nmm−2–1857.24 Nmm−2 and 0.35 Nmm−2–243.75 Nmm−2 for tensile modulus and strength respectively. It was observed that moisture uptake and strength displayed by the composites vary accordingly in values obtained for wood species at different mixing proportions. As observed that the more polyethylene content is compounded to wood, the better its dimensional stability, and flexural and tensile properties. The wood particles of Cordiamilleni compounded at a proportion of 60 to 40 (polyethylene/wood) performed best in dimensional stability and load-bearing capacity. This study confirmed the effect of methods on wood species and recycled PE for manufacturing wood polymer-based composite for both indoor and outdoor applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference37 articles.

1. Thompson, R. C., Moore, C. J., Vom Saal, F. S. & Swan, S. H. Plastics, the environment and human health: Current consensus and future trends. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2153–2166 (2009).

2. Babayemi, J. O., Nnorom, I. C., Osibanjo, O. & Weber, R. Ensuring sustainability in plastics use in Africa: Consumption, waste generation, and projections. Environ. Sci. Eur. 31(1), 1–20 (2019).

3. Vlachopoulos, J. & Wagner, J. (eds) ‘The SPE Guide on Extrusion Technology and Troubleshooting’; 2001 (Society of Plastics Engineers, 2001).

4. Wolcott, M. P. & Karl, E. A Technology Review of Wood-Plastic Composites (Washington State University, 2010).

5. Aina, K. S., Oluyege, O. A. & Fuwape, J. A. Effects of Indigenous wood specie and plastic/wood ratio on physicomechanical properties of wood-plastic composites. Int. J. Sci. Res. Agric. Sci. 30(1), 11–17 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3