Ensuring sustainability in plastics use in Africa: consumption, waste generation, and projections

Author:

Babayemi Joshua O.ORCID,Nnorom Innocent C.,Osibanjo Oladele,Weber Roland

Abstract

Abstract Background Currently, plastic is at the top of the international agenda for waste management. Recent meetings of the Conferences of the Parties to the Basel and the Stockholm Conventions have expressed concerns over the impact of plastic waste, marine plastic litter, and microplastics, and emphasised the importance of reducing consumption and ensuring the environmentally sound management of waste plastics. This study presents the first continental historical analysis of mass importation and consumption of different polymers and plastics (primary and secondary forms, respectively) in Africa and the associated pollution potential. We identified, collated and synthesised dispersed international trade data on the importation of polymers and plastics into several African countries. Results The 33 African countries (total population of 856,671,366) with available data for more than 10 years imported approximately 86.14 Mt of polymers in primary form and 31.5 Mt of plastic products between 1990 and 2017. Extrapolating to the continental level (African population of 1.216 billion in 54 countries), about 172 Mt of polymers and plastics valued at $285 billion were imported between 1990 and 2017. Considering also the components of products, an estimated 230 Mt of plastics entered Africa during that time period, with the largest share going to Egypt (43 Mt, 18.7%), Nigeria (39 Mt, 17.0%), South Africa (27 Mt, 11.7%), Algeria (26 Mt, 11.3%), Morocco (22 Mt, 9.6%), and Tunisia (16 Mt, 7.0%). Additionally, primary plastic production in 8 African countries contributed 15 Mt during 2009–2015. The assessment showed that environmentally sound end-of-life management of waste plastics by recycling and energy recovery is in its infancy in Africa, but recycling activities and thermal recovery have started in a few countries. Conclusions Globally, the perception is that production and consumption of plastics can only increase in the future. Solutions are needed to tackle this global challenge. Certain policies and plastic bag bans could help reduce plastic consumption in the near future, as demonstrated by Rwanda. Furthermore, there is a need for innovative solutions such as the introduction of biodegradable polymers and other alternatives, especially for packaging.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference78 articles.

1. Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 567:333–349

2. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):1–5. https://doi.org/10.1126/sciadv.1700782

3. Ratnasari DK, Nahil MA, Williams PT (2016) Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J Anal Appl Pyrol. https://doi.org/10.1016/j.jaap.2016.12.027

4. World Economic Forum (2019) Eight steps to solve the ocean’s plastic problem. https://www.weforum.org/agenda/2018/03/8-steps-to-solve-the-oceans-plastic-problem/ . Accessed 8 Feb 2019

5. Rokade S (2012) Use of waste plastic and waste rubber tyres in flexible highway pavements. In: 2012 International Conference on Future Environment and Energy IPCBEE vol. 28 (2012). IACSIT Press, Singapore Polymer-Plastics Technology and Engineering, vol 47, pp 741–74

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3