An accurate and efficient method for occlusal tooth wear assessment using 3D digital dental models

Author:

Gkantidis Nikolaos,Dritsas Konstantinos,Ren Yijin,Halazonetis Demetrios,Katsaros Christos

Abstract

AbstractTooth or material wear in a dentition is a common finding that requires timely diagnosis for management and prevention of further loss or associated esthetic or functional impairment. Various qualitative and quantitative methods have been suggested to measure tooth or material wear, but they present with limitations, such as imprecision, subjectivity, or high complexity. Here we developed and assessed an efficient 3D superimposition method to accurately measure occlusal tooth wear on 3D digital dental models. For this purpose, teeth on plaster casts were manually grinded on their occlusal surfaces to simulate various degrees of tooth wear. The casts were scanned using a surface scanner. Grinded tooth crowns (T1) were segmented and compared to the original crowns (T0) using five 3D surface superimposition techniques and a gold standard technique (GS). GS measurements were obtained by using intact adjacent structures as superimposition references. The technique of choice (complete crown with 30% estimated overlap of meshes) showed the best reproducibility (maximum difference < 0.050 mm3) and excellent agreement with the GS technique (median difference: 0.032 mm3). The suggested 3D superimposition method offers a highly efficient and accurate tool for tooth wear assessment, which could be applicable to clinical conditions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3