Seepage field characteristic and stability analysis of tailings dam under action of chemical solution

Author:

Wang Guangjin,Hu Bin,Tian Sen,Ai Min,Liu Wenlian,Kong Xiangyun

Abstract

AbstractAs one of the important influencing factors of tailings dam stability, seepage field distribution within the dam is often affected by the tailings mineral characteristics. While the alkalinity or acidity of reservoir water and long term immersion will partially change the physical and mechanical properties of tailings. This study carried out permeability tests of tailings under the action of chemical solution. On this basis, a three dimensional (3D) model was constructed to analyze the velocity field and effective saturation within the tailings dam. Moreover, the dam section along the valley bottom was selected as the basic section in calculation, so as to analyze the changes in infiltration point and buried depth of the phreatic line under different permeability coefficient ratios. The results suggest that, under the action of acid-alkaline solution, the permeability coefficients of tailings reduced, and the stronger solution acidity-alkalinity resulted in the longer action time and more obvious change; under the action of chemical solution, the fluid flow velocity in the dam gradually decreased, and the drat beach length in the reservoir gradually shortened. Besides, when the upper layer permeability coefficients of tailings was lower than that of the lower layer, the dam phreatic line had a shallow buried depth and a high infiltration point.

Funder

National key research and development plan

National Natural Science Foundation of China

Open issue with “the key laboratory of mine geological hazards mechanism” and Hubei province technical innovation special

General Program of Chongqing Natural Science Foundation Project

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3