Numerical Simulation of Seepage Surface and Analysis of Phreatic Line Control from a Fine-Grained Tailings High Stacked Dam under Complicated Geography Conditions

Author:

Han Yabing123,Wang Guangjin134,Zhang Xudong12,Zhao Bing1

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Beijing General Research Institute of Mining and Metallurgy Technology Group, Beijing 100084, China

3. Yunnan International Technology Transfer Center for Mineral Resources Development and Solid Waste Resource Utilization, Kunming 650093, China

4. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

Abstract

Background: It is adverse for the safety of a tailings dam to use fine-grained tailings as the materials for a high tailings dam because of the low penetration coefficient, the slow consolidating velocity, and the bad physical mechanical property. Furthermore, with the influence of complicated geography conditions, the phreatic line will be increased enormously when encountering special conditions, which directly affect the safe operation of the tailings dam. Methods: In this study, based on the engineering, geological, and hydrogeological conditions and survey results of a tailings dam, a 210 m fine-grained tailings dam located in three gullies was selected and used to simulate the three-dimensional seepage field of a tailings dam under a steady saturated state by using the finite element software MIDAS GTS. The permeability coefficient was inverted, the seepage field of the project under different working conditions was simulated, and the position of the phreatic line was obtained. The controlled position of phreatic lines was determined by combining the seepage field with the stability requirements. Results: Back analysis could accurately reflect the actual permeability coefficient of each partition of tailings dams. Due to the multiple areas of seepage accumulation, large valley corners, and narrowing of the dam axis, the phreatic line of the shoulder region was elevated by 2~3 m compared to the surrounding area and was thereby the most critical region of the tailings dam seepage control. The stability requirements and minimum controlled position of the phreatic line requirements could be met when the controlled position of the phreatic line was 23 m. Conclusion: This study revealed the key areas and reasons why the tailings dam’s phreatic line is prone to be uplifted under complicated geography conditions. It was very critical to control the local phreatic line by adopting local horizontal seepage drainage measures or radiation wells in the key areas of the tailings dam to ensure the safety of the tailings dam. In addition to strengthening the daily monitoring of the key areas and the exfiltration facilities of the tailings dam, it is recommended to carry out determination tests of the permeability coefficient and particle size at regular intervals. The findings could provide countermeasures for seepage control.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3