Author:
Zhang Huang,Zhang Shuyou,Qiu Lemiao,Zhang Yiming,Wang Yang,Wang Zili,Yang Gaopeng
Abstract
AbstractThe non-linear and non-stationary vibration data generated by rotating machines can be used to analyze various fault conditions for predicting the remaining useful life(RUL). It offers great help to make prognostic and health management(PHM) develop. However, the complexity of the mechanical working environment makes the vibration data collected easily affected, so it is hard to form an appropriate health index(HI) to predict the RUL. In this paper, a PSR-former model is proposed including a Phase space reconstruction(PSR) layer and a Transformer layer. The PSR layer is utilized as an embedding to deepen the understanding of vibration data after feature fusion. In the Transformer layer, an attention mechanism is adopted to give different assignments, and a layer-hopping connection is used to accelerate the convergence and make the structure more stable. The effectiveness of the proposed method is validated through the Intelligent Maintenance Systems (IMS) bearing dataset. Through analysis, the prediction accuracy is judged by the parameter RMSE which is 1.0311. Some state-of-art methods such as LSTM, GRU, and CNN were also analyzed on the same dataset to compare. The result indicates that the proposed method can effectively establish a precise model for RUL predictions.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献