An efficient energy management scheme using rule-based swarm intelligence approach to support pulsed load via solar-powered battery-ultracapacitor hybrid energy system

Author:

Wasim Muhammad Shahid,Amjad Muhammad,Abbasi Muhammad Abbas,Bhatti Abdul Rauf,Rasool Akhtar,Raheem Abdur,Ali Ahmed,Khan Baseem

Abstract

AbstractThis work presents an energy management scheme (EMS) based on a rule-based grasshopper optimization algorithm (RB-GOA) for a solar-powered battery-ultracapacitor hybrid system. The main objective is to efficiently meet pulsed load (PL) demands and extract maximum energy from the photovoltaic (PV) array. The proposed approach establishes a simple IF-THEN set of rules to define the search space, including PV, battery bank (BB), and ultracapacitor (UC) constraints. GOA then dynamically allocates power shares among PV, BB, and UC to meet PL demand based on these rules and search space. A comprehensive study is conducted to evaluate and compare the performance of the proposed technique with other well-known swarm intelligence techniques (SITs) such as the cuckoo search algorithm (CSA), gray wolf optimization (GWO), and salp swarm algorithm (SSA). Evaluation is carried out for various cases, including PV alone without any energy storage device, variable PV with a constant load, variable PV with PL cases, and PV with maximum power point tracking (MPPT). Comparative analysis shows that the proposed technique outperforms the other SITs in terms of reducing power surges caused by PV power or load transition, oscillation mitigation, and MPP tracking. Specifically, for the variable PV with constant load case, it reduces the power surge by 26%, 22%, and 8% compared to CSA, GWO, and SSA, respectively. It also mitigates oscillations twice as fast as CSA and GWO and more than three times as fast as SSA. Moreover, it reduces the power surge by 9 times compared to CSA and GWO and by 6 times compared to SSA in variable PV with the PL case. Furthermore, its MPP tracking speed is approximately 29% to 61% faster than its counterparts, regardless of weather conditions. The results demonstrate that the proposed EMS is superior to other SITs in keeping a stable output across PL demand, reducing power surges, and minimizing oscillations while maximizing the usage of PV energy.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ВКЛАД «ЗЕЛЕНОГО» УЧЁТА В ФИНАНСОВОМ МЕНЕДЖМЕНТЕ В УСТОЙЧИВОЕ РАЗВИТИЕ КОМПАНИЙ ЭНЕРГЕТИЧЕСКОЙ ОТРАСЛИ В УЗБЕКИСТАНЕ: МЕТОДОЛОГИЧЕСКИЙ АСПЕКТ;Ижтимоий-гуманитар фанларнинг долзарб муаммолари / Актуальные проблемы социально-гуманитарных наук / Actual Problems of Humanities and Social Sciences.;2024-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3