Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems

Author:

Haq Izhar Ul,Khan Qudrat,Ullah SafeerORCID,Khan Shahid Ahmed,Akmeliawati RiniORCID,Khan Mehmood Ashraf,Iqbal JamshedORCID

Abstract

The increasing energy demand and the target to reduce environmental pollution make it essential to use efficient and environment-friendly renewable energy systems. One of these systems is the Photovoltaic (PV) system which generates energy subject to variation in environmental conditions such as temperature and solar radiations. In the presence of these variations, it is necessary to extract the maximum power via the maximum power point tracking (MPPT) controller. This paper presents a nonlinear generalized global sliding mode controller (GGSMC) to harvest maximum power from a PV array using a DC-DC buck-boost converter. A feed-forward neural network (FFNN) is used to provide a reference voltage. A GGSMC is designed to track the FFNN generated reference subject to varying temperature and sunlight. The proposed control strategy, along with a modified sliding mode control, eliminates the reaching phase so that the sliding mode exists throughout the time. The system response observes no chattering and harmonic distortions. Finally, the simulation results using MATLAB/Simulink environment demonstrate the effectiveness, accuracy, and rapid tracking of the proposed control strategy. The results are compared with standard results of the nonlinear backstepping controller under abrupt changes in environmental conditions for further validation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. Moving towards green and sustainable manufacturing;DA Dornfeld;International Journal of Precision Engineering and Manufacturing-Green Technology,2014

2. Maximum power extraction strategy for variable speed wind turbine system via neuro-adaptive generalized global sliding mode controller;IU Haq;IEEE Access,2020

3. Sawin JL, Sverrisson F, Rickerson W. Renewables 2018 global status report. Paris: REN21 Secretariat REN21. 2018.

4. Tanaka N. Technology Roadmap: Solar photovoltaic Energy, International Energy Agency (IEA), Paris, 2010.

5. High-accuracy maximum power point estimation for photovoltaic arrays;JC Wang;Solar Energy Materials and Solar Cells,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3