Data-driven distillation and precision prognosis in traumatic brain injury with interpretable machine learning

Author:

Tritt Andrew,Yue John K.,Ferguson Adam R.,Torres Espin Abel,Nelson Lindsay D.,Yuh Esther L.,Markowitz Amy J.,Manley Geoffrey T.,Bouchard Kristofer E.,Keene C. Dirk,Madden Christopher,McCrea Michael,Merchant Randall,Mukherjee Pratik,Ngwenya Laura B.,Robertson Claudia,Schnyer David,Taylor Sabrina R.,Zafonte Ross,

Abstract

AbstractTraumatic brain injury (TBI) affects how the brain functions in the short and long term. Resulting patient outcomes across physical, cognitive, and psychological domains are complex and often difficult to predict. Major challenges to developing personalized treatment for TBI include distilling large quantities of complex data and increasing the precision with which patient outcome prediction (prognoses) can be rendered. We developed and applied interpretable machine learning methods to TBI patient data. We show that complex data describing TBI patients' intake characteristics and outcome phenotypes can be distilled to smaller sets of clinically interpretable latent factors. We demonstrate that 19 clusters of TBI outcomes can be predicted from intake data, a ~ 6× improvement in precision over clinical standards. Finally, we show that 36% of the outcome variance across patients can be predicted. These results demonstrate the importance of interpretable machine learning applied to deeply characterized patients for data-driven distillation and precision prognosis.

Funder

U.S. Department of Energy, ASCR

Neurosurgery Research and Education Foundation & Bagan Family Foundation Research Fellowship

National Institute of Neurological Disorders and Stroke

US Departments of Defense

Weill Neurohub

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3