Challenges of Outcome Prediction for Acute Stroke Treatment Decisions

Author:

Goyal Mayank123ORCID,Ospel Johanna Maria4,Kappelhof Manon5,Ganesh Aravind1

Affiliation:

1. Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Canada (M.G., A.G.).

2. Department of Radiology (M.G.), University of Calgary, Canada.

3. Hotchkiss Brain Institute (M.G.), University of Calgary, Canada.

4. Department of Neuroradiology, University Hospital Basel, Switzerland (J.M.O.).

5. Department of Radiology, Amsterdam UMC, University of Amsterdam, the Netherlands (M.K.).

Abstract

Physicians often base their decisions to offer acute stroke therapies to patients around the question of whether the patient will benefit from treatment. This has led to a plethora of attempts at accurate outcome prediction for acute ischemic stroke treatment, which have evolved in complexity over the years. In theory, physicians could eventually use such models to make a prediction about the treatment outcome for a given patient by plugging in a combination of demographic, clinical, laboratory, and imaging variables. In this article, we highlight the importance of considering the limits and nuances of outcome prediction models and their applicability in the clinical setting. From the clinical perspective of decision-making about acute treatment, we argue that it is important to consider 4 main questions about a given prediction model: (1) what outcome is being predicted, (2) what patients contributed to the model, (3) what variables are in the model (considering their quantifiability, knowability at the time of decision-making, and modifiability), and (4) what is the intended purpose of the model? We discuss relevant aspects of these questions, accompanied by clinically relevant examples. By acknowledging the limits of outcome prediction for acute stroke therapies, we can incorporate them into our decision-making more meaningfully, critically examining their contents, outcomes, and intentions before heeding their predictions. By rigorously identifying and optimizing modifiable variables in such models, we can be empowered rather than paralyzed by them.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3