Influence of hydroxyapatite nanoparticles on the formation of calcium fluoride surface layer on enamel and dentine in vitro

Author:

Rodemer Tina,Pütz Norbert,Hannig Matthias

Abstract

AbstractTopical application of different fluoride preparations is considered to be the gold standard of oral prophylaxis measures in preventive dentistry. Hydroxyapatite nanoparticles (nano-HAP) as well, have received considerable attention for dental use in the past few decades. The purpose of this in-vitro study was to analyze the interaction between nano-HAP and different fluoride preparations. In order to investigate the possibility to establish, in the presence of nano-HAP, reproducible calcium fluoride surface layers, specimens were visually examined with regard to the surface coverage’s structure, morphology, homogeneity and stability. Test series based on enamel and dentine specimens, that were obtained from extracted bovine teeth, were conducted. Thereby, sodium fluoride, olaflur, elmex Fluid (10.000 ppm) and an aqueous nano-HAP solution (5%) served as test products and sterile water as reference. First, single application of nano- HAP and fluoride was tested. After 5 min of incubation in the test solution, the surface coverage was examined by scanning electron microscopy (SEM). Furthermore, samples were determined by energy dispersive X-ray spectroscopy (EDX) to identify the present elements of the surface layer, particularly fluoride. To test the calcium fluoride layer’s persistence and stability, samples were exposed to the spray of a dental multifunctional syringe for 20 s using maximum pressure and maximum water supply. In the second application protocol, fluoride and nano-HAP were applied simultaneously and in the third application protocol they were used sequentially. SEM visualisation showed that the simultaneous or sequential addition of nano-HAP led to a distinct change in the surface layer’s structure. Agglomerates of various sizes were formed, with obviously different morphology from the calcium fluoride globules, not covering the surface homogeneously and sprayed off with the multifunctional syringe easily. Application of pure fluoride compounds resulted in a more homogeneous calcium fluoride surface layer with higher persistence in comparison to the combination of fluoride and nano-HAP. Interaction between fluoride and nano-HAP clearly could be proved. On enamel as well as dentine surfaces, the combined application of nano-HAP and fluoride has a negative effect on the stability and persistence of the calcium fluoride surface precipitate.

Funder

Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference43 articles.

1. Hellwig, E., Schiffner, U., & Schulte, A. S2k-Leitlinie—Fluoridierungsmaßnahme zur Kariesprophylaxe (2013).

2. Marinho, V. C., Higgins, J. P., Sheiham, A. & Logan, S. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 1, CD002278 (2003).

3. Walsh, T., Worthington, H., Glenny, A.-M., Marinho, V. & Jeroncic, A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst. Rev. 3, CD007868 (2019).

4. Marinho, V. C., Worthington, H. V., Walsh, T. & Clarkson, J. E. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 1, CD002279 (2013).

5. Marinho, V. C., Worthington, H. V., Walsh, T. & Chong, L. Y. Fluoride gels for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 1, CD002280 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3