Efficacy of the Probiotic L. brevis in Counteracting the Demineralizing Process of the Tooth Enamel Surface: Results from an In Vitro Study

Author:

Altamura Serena1234ORCID,Augello Francesca Rosaria1,Ortu Eleonora134,Pietropaoli Davide134ORCID,Cinque Benedetta1,Giannoni Mario13,Lombardi Francesca1ORCID

Affiliation:

1. Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy

2. Ph.D. School in Medicine and Public Health, University of L’Aquila, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy

3. Center of Oral Diseases, Prevention and Translational Research—Dental Clinic, 67100 L’Aquila, Italy

4. Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy

Abstract

Background. Enamel plays an essential role in protecting the underlying layers of the human tooth; therefore, preserving it is vital. This experimental study aimed to evaluate the potential ability of L. brevis to counteract the action of a demineralizing agent on dental enamel morphology and mineral composition in vitro. Methods. The sample consisted of 12 healthy human posterior teeth. The coronal portion of each tooth was subdivided into two equal parts longitudinally. The specimens were randomly divided into four groups: artificial saliva, L. brevis suspension, demineralizing agent (DA), and DA plus L. brevis. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to evaluate the surface micromorphology and the mineral content, respectively. The statistical analysis was conducted using a one-way ANOVA, followed by Tukey’s post hoc test. Results. SEM analysis did not highlight significant changes in the enamel microstructure of L. brevis-treated specimens compared to the control. DA-induced damage to the enamel structure was drastically reduced when the specimens were contextually exposed to the probiotic. The treatment with DA substantially reduced the weight % of crucial enamel minerals, i.e., Ca and P. Notably, the probiotic was able to reverse the demineralization process, bringing Ca and P weight % back to basal levels, including the Ca/P ratio. Conclusions. The findings indicate that L. brevis is able to efficiently protect the dental enamel surface from the damage caused by DA and increase the enamel resistance to demineralization. Overall, L. brevis confirms its efficacy in preventing or counteracting the action of carious lesions through a novel mechanism that protects the tooth surface under a chemical challenge that mimics the caries process.

Funder

Department of Life, Health, and Environmental Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3