An efficient point cloud semantic segmentation network with multiscale super-patch transformer

Author:

Miao Yongwei,Sun Yuliang,Zhang Yimin,Wang Jinrong,Zhang Xudong

Abstract

AbstractEfficient semantic segmentation of large-scale point cloud scenes is a fundamental and essential task for perception or understanding the surrounding 3d environments. However, due to the vast amount of point cloud data, it is always a challenging to train deep neural networks efficiently and also difficult to establish a unified model to represent different shapes effectively due to their variety and occlusions of scene objects. Taking scene super-patch as data representation and guided by its contextual information, we propose a novel multiscale super-patch transformer network (MSSPTNet) for point cloud segmentation, which consists of a multiscale super-patch local aggregation (MSSPLA) module and a super-patch transformer (SPT) module. Given large-scale point cloud data as input, a dynamic region-growing algorithm is first adopted to extract scene super-patches from the sampling points with consistent geometric features. Then, the MSSPLA module aggregates local features and their contextual information of adjacent super-patches at different scales. Owing to the self-attention mechanism, the SPT module exploits the similarity among scene super-patches in high-level feature space. By combining these two modules, our MSSPTNet can effectively learn both local and global features from the input point clouds. Finally, the interpolating upsampling and multi-layer perceptrons are exploited to generate semantic labels for the original point cloud data. Experimental results on the public S3DIS dataset demonstrate its efficiency of the proposed network for segmenting large-scale point cloud scenes, especially for those indoor scenes with a large number of repetitive structures, i.e., the network training of our MSSPTNet is much faster than other segmentation networks by a factor of tens to hundreds.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3