Exploring the effects of stationary camera spots on inferences drawn from real-time crash severity models

Author:

Abdi Amirhossein,Seyedabrishami Seyedehsan,Llorca Carlos,Moreno Ana Tsui

Abstract

AbstractThis study combined crash reports, land use, real-time traffic, and weather data to form an integrated database to analyze the severity of crashes taking place on rural highways. As the traffic cameras are placed at fixed locations, there is a wide range of measured distances between crashes and the selected nearest camera for extracting traffic variables. This may change the significance of traffic variables. For the first time, spacing was introduced as the distance around the detectors in which traffic characteristics are inferred to crashes. Classification and Regression Tree (CART) was employed as an interpretable tool to explore how spacing affects model performance and the significance of traffic variables. Twelve spacing scenarios from 250 to 3000 m were evaluated. Except for short spacings suffering from the low sample size issue, each model has a good predictive performance based on overall accuracy and F2 score in the 1000–3000 m spacings. In this range, three dominant rules emerged: (1) high deviations of speed on the roads surrounded by wastelands are associated with severe crashes; (2) faded markings in residential zones increase the likelihood of severe outcomes; (3) installation of barriers decrease the probability of severe crashes. Comparing the Variable Importance Measure (VIM) reveals that the total importance of traffic variables reduces as the spacing increases. Also, results indicate that average speed is significant until 1750 m; but speed deviation, traffic flow, and percent of heavy vehicles are more stable variables for further spacings. In conclusion, for the first time, spacing scenarios were evaluated systematically and proved that they have a remarkable impact on the significance of variables. This novel research provides guidance not only on the spacing but also on which real-time traffic variables have a greater impact on crash severity, along with design, land use, and environmental variables.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3