Decadal cyclical geological atmospheric emissions for a major marine seep field, offshore Coal Oil Point, Southern California

Author:

Leifer Ira

Abstract

AbstractThe greenhouse gas, methane, budget has significant uncertainty for many sources, including natural geological emissions. A major uncertainty of geological methane emissions, including onshore and offshore hydrocarbon seepage from subsurface hydrocarbon reservoirs is the gas emissions’ temporal variability. Current atmospheric methane budget models assume seepage is constant; nevertheless, available data and seepage conceptual models suggest gas seepage can vary considerably on timescales from second to century. The assumption of steady-seepage is used because long-term datasets to characterize these variabilities are lacking. A 30-year air quality dataset downwind of the Coal Oil Point seep field, offshore California found methane, CH4, concentrations downwind of the seep field increased from a 1995 minimum to a 2008 peak, decreasing exponentially afterward with a 10.2-year timescale (R2 = 0.91). Atmospheric emissions, EA, were derived by a time-resolved Gaussian plume inversion model of the concentration anomaly using observed winds and gridded sonar source location maps. EA increased from 27,200 to 161,000 m3 day−1 (corresponding to 6.5–38 Gg CH4 year−1 for 91% CH4 content) for 1995–2009, respectively, with 15% uncertainty, then decreased exponentially from 2009 to 2015 before rising above the trend. 2015 corresponded to the cessation of oil and gas production, which affects the western seep field. EA varied sinusoidally with a 26.3-year period (R2 = 0.89) that largely tracked the Pacific Decadal Oscillation (PDO), which is driven on these timescales by an 18.6-year earth-tidal cycle (27.9-year beat). A similar controlling factor may underlie both, specifically varying compressional stresses on migration pathways. This also suggests the seep atmospheric budget may exhibit multi-decadal trends.

Funder

Plains All American Pipeline

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3