Global geological methane emissions: An update of top-down and bottom-up estimates

Author:

Etiope Giuseppe1ORCID,Schwietzke Stefan2

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Rome, IT

2. Environmental Defense Fund, London, UK

Abstract

A wide body of literature suggests that geological gas emissions from Earth’s degassing are a major methane (CH4) source to the atmosphere. These emissions are from gas-oil seeps, mud volcanoes, microseepage and submarine seepage in sedimentary (petroleum-bearing) basins, and geothermal and volcanic manifestations. Global bottom-up emission estimates, ranging from 30 to 76 Tg CH4 yr–1, evolved in the last twenty years thanks to the increasing number of flux measurements, and improved knowledge of emission factors and area distribution (activity). Based on recent global grid maps and updated evaluations of mud volcano and microseepage emissions, the global geo-CH4 source is now (bottom-up) estimated to be 45 (27–63) Tg yr–1, i.e., ~8% of total CH4 sources. Top-down verifications, based on independent approaches (including ethane and isotopic observations) from different authors, are consistent with the range of the bottom-up estimate. However, a recent top-down study, based on radiocarbon analyses in polar ice cores, suggests that geological, fossil (14C-free) CH4 emissions about 11,600 years ago were much lower (<15 Tg yr–1, 95% CI) and that this source strength could also be valid today. Here, we show that (i) this geo-CH4 downward revision implies a fossil fuel industry CH4 upward revision of at least 24–35%. (ii) The 95% CI estimates of the recent radiocarbon analysis do not overlap with those of 5 out of 6 other bottom-up and top-down studies (no overlap for the 90% CI estimates). (iii) The contrasting lines of evidence require further discussion, and research opportunities exist to help explain this gap.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3