Field pea (Pisum sativum L.) shows genetic variation in phosphorus use efficiency in different P environments

Author:

Powers Sarah,Mirsky Emily,Bandaranayake Anuruddha,Thavarajah Pushparajah,Shipe Emerson,Bridges William,Thavarajah Dil

Abstract

Abstract Field pea is important to agriculture as a nutritionally dense legume, able to fix nitrogen from the atmosphere and supply it back to the soil. However, field pea requires more phosphorus (P) than other crops. Identifying field pea cultivars with high phosphorus use efficiency (PUE) is highly desirable for organic pulse crop biofortification. This study identified field pea accessions with high PUE by determining (1) the variation in P remobilization rate, (2) correlations between P and phytic acid (PA), and (3) broad-sense heritability estimates of P concentrations. Fifty field pea accessions were grown in a completely randomized design in a greenhouse with two replicates under normal (7551 ppm) and reduced (4459 ppm) P fertilizer conditions and harvested at two time points (mid-pod and full-pod). P concentrations ranged from 332 to 9520 ppm under normal P and from 83 to 8473 ppm under reduced P conditions across all tissues and both time points. Field pea accessions showed variation in remobilization rates, with PI 125840 and PI 137119 increasing remobilization of P under normal P conditions. Field pea accessions PI 411142 and PI 413683 increased P remobilization under the reduced P treatment. No correlation was evident between tissue P concentration and seed PA concentration (8–61 ppm). Finally, seed P concentration under limited P conditions was highly heritable (H2 = 0.85), as was mid-pod lower leaf P concentrations under normal P conditions (H2 = 0.81). In conclusion, breeding for PUE in field pea is possible by selecting for higher P remobilization accessions in low P soils with genetic and location sourcing.

Funder

United States Department of Agriculture, National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3