Using an ontology of the human cardiovascular system to improve the classification of histological images

Author:

Mazo ClaudiaORCID,Alegre Enrique,Trujillo Maria

Abstract

AbstractThe advantages of automatically recognition of fundamental tissues using computer vision techniques are well known, but one of its main limitations is that sometimes it is not possible to classify correctly an image because the visual information is insufficient or the descriptors extracted are not discriminative enough. An Ontology could solve in part this problem, because it gathers and makes possible to use the specific knowledge that allows detecting clear mistakes in the classification, occasionally simply by pointing out impossible configurations in that domain. One of the main contributions of this work is that we used a Histological Ontology to correct, and therefore improve the classification of histological images. First, we described small regions of images, denoted as blocks, using Local Binary Pattern (LBP) based descriptors and we determined which tissue of the cardiovascular system was present using a cascade Support Vector Machine (SVM). Later, we built Resource Description Framework (RDF) triples for the occurrences of each discriminant class. Based on that, we used a Histological Ontology to correct, among others, “not possible” situations, improving in this way the global accuracy in the blocks first and in tissues classification later. For the experimental validation, we used a set of 6000 blocks of $$100\times100$$100×100 pixels, obtaining F-Scores between 0.769 and 0.886. Thus, there is an improvement between 0.003 and $$0.769\%$$0.769% when compared to the approach without the histological ontology. The methodology improves the automatic classification of histological images using a histological ontology. Another advantage of our proposal is that using the Ontology, we were capable of recognising the epithelial tissue, previously not detected by any of the computer vision methods used, including a CNN proposal called HistoResNet evaluated in the experiments. Finally, we also have created and made publicly available a dataset consisting of 6000 blocks of labelled histological tissues.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3