Application of Siamese Networks to the Recognition of the Drill Wear State Based on Images of Drilled Holes

Author:

Kurek JarosławORCID,Antoniuk IzabellaORCID,Świderski BartoszORCID,Jegorowa AlbinaORCID,Bukowski Michał

Abstract

In this article, a Siamese network is applied to the drill wear classification problem. For furniture companies, one of the main problems that occurs during the production process is finding the exact moment when the drill should be replaced. When the drill is not sharp enough, it can result in a poor quality product and therefore generate some financial loss for the company. In various approaches to this problem, usually, three classes are considered: green for a drill that is sharp, red for the opposite, and yellow for a tool that is suspected of being worn out, requiring additional evaluation by a human expert. In the above problem, it is especially important that the green and the red classes not be mistaken, since such errors have the highest probability of generating financial loss for the manufacturer. Most of the solutions analysing this problem are too complex, requiring specialized equipment, high financial investment, or both, without guaranteeing that the obtained results will be satisfactory. In the approach presented in this paper, images of drilled holes are used as the training data for the Siamese network. The presented solution is much simpler in terms of the data collection methodology, does not require a large financial investment for the initial equipment, and can accurately qualify drill wear based on the chosen input. It also takes into consideration additional manufacturer requirements, like no green-red misclassifications, that are usually omitted in existing solutions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3