Development and implementation of patient-level prediction models of end-stage renal disease for type 2 diabetes patients using fast healthcare interoperability resources

Author:

Wang San,Han Jieun,Jung Se Young,Oh Tae Jung,Yao Sen,Lim Sanghee,Hwang Hee,Lee Ho-Young,Lee Haeun

Abstract

AbstractThis study aimed to develop a model to predict the 5-year risk of developing end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) using machine learning (ML). It also aimed to implement the developed algorithms into electronic medical records (EMR) system using Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR). The final dataset used for modeling included 19,159 patients. The medical data were engineered to generate various types of features that were input into the various ML classifiers. The classifier with the best performance was XGBoost, with an area under the receiver operator characteristics curve (AUROC) of 0.95 and area under the precision recall curve (AUPRC) of 0.79 using three-fold cross-validation, compared to other models such as logistic regression, random forest, and support vector machine (AUROC range, 0.929–0.943; AUPRC 0.765–0.792). Serum creatinine, serum albumin, the urine albumin-to-creatinine ratio, Charlson comorbidity index, estimated GFR, and medication days of insulin were features that were ranked high for the ESRD risk prediction. The algorithm was implemented in the EMR system using HL7 FHIR through an ML-dedicated server that preprocessed unstructured data and trained updated data.

Funder

Enovant Korea Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference39 articles.

1. Benjamin, O. & Lappin, S. L. in StatPearls [Internet] (StatPearls Publishing, 2021).

2. Ghaderian, S. B., Hayati, F., Shayanpour, S. & Mousavi, S. S. B. Diabetes and end-stage renal disease: A review article on new concepts. J. Renal Inj. Prev. 4, 28 (2015).

3. Abbasi, M. A., Chertow, G. M. & Hall, Y. N. End-stage renal disease. BMJ Clin. Evid. 2010 (2010).

4. Nasri, H. & Rafieian-Kopaei, M. Diabetes mellitus and renal failure: Prevention and management. J. Res. Med. Sci. 20, 1112 (2015).

5. Lim, A. K. Diabetic nephropathy–complications and treatment. Int. J. Nephrol. Renov. Dis. 7, 361 (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3