Soil water dynamics and biomass production of young rooibos (Aspalathus linearis) plants

Author:

van Schalkwyk Roeline,Hoffman J. Eduard,Hardie Ailsa G.,van Zyl Johan L.

Abstract

AbstractRooibos (Aspalathus linearis) is endemic to certain regions of the Western- and Northern Cape of South Africa, where it is also commercially grown. Being low-rainfall regions, information on the soil water balance of rooibos is essential, but such data is limited. Consequently, the effect of inorganic fertilisation and soil depth on soil water dynamics in a young rooibos plantation at Nardouwsberg, Western Cape were studied. Soil water content of plots planted to unfertilised and fertilised plants as well as that of bare soil were determined over the duration of the 2016/17 season. All treatments were replicated on shallow and deep soils sites and plant growth was determined at the end of the season. At the end of the study, the profile soil water content and evapotranspiration of the bare and planted plots were similar which prove that fallowing (water harvesting) is not an option in the sandy soils of this region. With the exception of the 20−30 cm root zone of the planted plots at the deep site, the water content decreased to levels below the permanent wilting point in the soil profile during summer. It was concluded that rooibos plants could survive through an adapted root system. A further survival method was proposed, involving moisture moved through evaporation from the deeper soil layers into the drying-front in the ~ 10−30 cm soil layer where a condensation-evaporation cycle enables rooibos to harvest small amounts of water. The highest shoot biomass with the longest taproot resulted from the unfertilised treatment on the deep soil thanks to higher soil water content, whereas the shoot and root biomass of the fertilised treatment at both sites were low due to high P soil concentration. This study revealed that unfertilised plants on deeper soils result in higher rooibos production under drought conditions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3