Aspalathus linearis(Rooibos tea) as potential phytoremediation agent: a review on tolerance mechanisms for aluminum uptake

Author:

Kanu Sheku A.1,Okonkwo Jonathan O.1,Dakora Felix D.2

Affiliation:

1. Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.

2. Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.

Abstract

Aspalathus linearis (Burm. F.) R. Dahlg., commonly referred to as Rooibos tea, grows naturally in nutrient-poor, sandy, acidic soils (pH 3–5.3) with high aluminum concentration ranging from 110 to 275 μg Al g−1in the Cederberg’s mountainous areas in South Africa. Earlier studies found significant differences in Al concentration in organs of A. linearis, with roots having higher amounts (1262–4078 μg Al g−1), suggesting that the plant is capable of accumulating excess Al in acidic soils. Identification of the mineralogical constituents of organs of A. linearis using X-ray diffraction (XRD) analysis revealed the presence of an Al–Si complex (aluminosilicate or hydroxyaluminosilicate (HAS) species) in the shoot and root, possibly to internally ameliorate Al toxicity. In addition, A. linearis has specialized cluster roots that exude Al-chelating organic acid ligands such as citric, malic, and malonic acids. Organic acids can bind strongly to Al in the plant and rhizosphere to reverse its phytotoxic effects to the plants. Field and glasshouse studies revealed significant differences in pH between rhizosphere and nonrhizosphere soils of A. linearis and also showed that roots of the plant release OHand HCO3anions to raise rhizosphere pH possibly to immobilize Al through complexation. Furthermore, A. linearis is easily infected by arbuscular mycorrhizae (AM) fungi, but mycorrhizal associations are known to inhibit transport of metallic cations into plant roots. These features of A. linearis are perceived as good indicators for bioremediation; and the plant could, therefore, be a suitable candidate for phytoremediation technologies such as phytoaccumulation, phytostabilization, and phytodegradation. The environmental and economic implications of the potential of A. linearis to bioremediate Al-contaminated soils are briefly discussed. Furthermore, this review briefly highlights future studies investigating the utilization of the shoot of A. linearis as adsorbent for the removal of trace and (or) heavy metal from aqueous solutions.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3