Thermal and optical properties of P3HT:PC70BM:ZnO nanoparticles composite films

Author:

Hajduk B.,Jarka P.,Bednarski H.,Godzierz M.,Tański T.,Staszuk M.,Nitschke P.,Jarząbek B.,Fijalkowski M.,Mazik K.

Abstract

AbstractThe results of studies on the influence of zinc oxide nanoparticles (ZnO-NPs) on the structural, thermal and optical properties of thin films of mixtures of phenyl-C71-butyric acid methyl ester (PCBM) with poly[3-hexylthiophene] (P3HT) of various molecular weights are described in this article. The structural properties of the layers of: polymers, mixtures of polymers with fullerenes and their composites with ZnO-NPs were investigated using X-ray diffraction. Whereas their glass transition temperature and optical parameters have been determined by temperature-dependent spectroscopic ellipsometry. The presence of ZnO-NPs was also visible in the images of the surface of the composite layers obtained using scanning electron microscopy. These blends and composite films have also been used as the active layer in bulk heterojunction photovoltaic structures. The molecular weight of P3HT (Mw = 65.2; 54.2 and 34.1 kDa) and the addition of nanoparticles affected the power conversion efficiency (PCE) of the obtained solar cells. The determined PCE was the highest for the device prepared from the blend of P3HT:PCBM with the polymer of the lowest molecular weight. However, solar cells with ZnO-NPs present in their active layer had lower efficiency, although the open-circuit voltage and fill factor of almost all devices had the same values whether they contained ZnO-NPs or not. It is worth noting that thermal studies carried out using temperature-dependent ellipsometry showed a significant effect of the presence of ZnO-NPs on the value of the glass transition temperature, which was higher for composite films than for films made of a polymer-fullerene blend alone.

Funder

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3