Organic photovoltaic cell with 17% efficiency and superior processability

Author:

Cui Yong1,Yao Huifeng1,Hong Ling12,Zhang Tao1,Tang Yabing3,Lin Baojun3,Xian Kaihu12,Gao Bowei12,An Cunbin1,Bi Pengqing1,Ma Wei3,Hou Jianhui12

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Abstract The development of organic photoactive materials, especially the newly emerging non-fullerene electron acceptors (NFAs), has enabled rapid progress in organic photovoltaic (OPV) cells in recent years. Although the power conversion efficiencies (PCEs) of the top-performance OPV cells have surpassed 16%, the devices are usually fabricated via a spin-coating method and are not suitable for large-area production. Here, we demonstrate that the fine-modification of the flexible side chains of NFAs can yield 17% PCE for OPV cells. More crucially, as the optimal NFA has a suitable solubility and thus a desirable morphology, the high efficiencies of spin-coated devices can be maintained when using scalable blade-coating processing technology. Our results suggest that optimization of the chemical structures of the OPV materials can improve device performance. This has great significance in larger-area production technologies that provide important scientific insights for the commercialization of OPV cells.

Funder

National Key Research and Development Program of China

Basic and Applied Basic Research Major Program of Guangdong Province

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

China Postdoctoral Science Foundation

Beijing National Laboratory for Molecular Sciences

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 487 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3