Influence of heat flow control on dynamical spin injection in CoFeB/Pt/CoFeB trilayer

Author:

Obinata Sora,Iimori Riku,Ohnishi Kohei,Kimura Takashi

Abstract

AbstractA dynamical spin injection based on the ferromagnetic resonance in a ferromagnetic/nonmagnetic bi-layered structure, is a powerful mean for generating and manipulating the spin current. Although the mechanism of the dynamical spin injection is mainly attributed to the spin pumping, the detailed mechanism and the quantitative understanding for related phenomena are still controversial. As an another important contribution to the dynamical spin injection, the heating effect due to the resonant precessional motion of the magnetization is pointed out recently. In order to quantify the contribution from the heating effect, we here investigate the dynamical spin injection in a CoFeB/Pt/CoFeB trilayer. Although the contribution from the spin pumping diminishes because of the symmetric spin injection from the upper and lower interfaces, a significant inverse spin Hall voltage has been clearly observed. We show that the observed voltage can be quantitatively understood by the thermal spin injection due to a heating effect during the ferromagnetic resonance. A proper combination between the spin pumping and the heat-flow control in the multi-layered system is a key for the efficient dynamical spin injection.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3