Amplification of typhoon-generated near-inertial internal waves observed near the Tsushima oceanic front in the Sea of Japan

Author:

Kawaguchi Yusuke,Yabe Itsuka,Senjyu Tomoharu,Sakai Akie

Abstract

AbstractIt is not fully understood how near-inertial kinetic energy (NIKE) is spatially distributed near Tsushima oceanic front (TOF) as a typhoon travels across the region. Underneath TOF, a year-round mooring covering a major part of water column was implemented in 2019. During summer, three massive typhoons (Krosa, Tapah, and Mitag) consecutively traversed the frontal area and delivered a substantial amount of NIKE into surface mixed layer. According to a mixed-layer slab model, NIKE was widely distributed near the cyclone’s track. The mooring observation exhibited the vertical distribution and pathways of surface-generated NIKE in response to the successive typhoon events. According to the modal decomposition, first three modes mostly explain the NIKE’s elevations following the typhoon events. According to ray-tracing experiments based on the internal-wave theory, large-scale near-inertial waves (NIWs) rapidly descend to a depth greater than 1000 m, while mesoscale NIWs slowly descend and rarely reached beyond the main pycnocline. Following the passage of Tapah, a profound energy mass was found nearly stationary at shallow depths coincident with vertical shear of geostrophic current. We infer that the descending rate of NIWs fell and then they were amplified through the energy conservation when the waves came from the north side of TOF.

Funder

UTEC

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3