Ant nest architecture is shaped by local adaptation and plastic response to temperature

Author:

Sankovitz Madison,Purcell Jessica

Abstract

AbstractSocial insects are among the most abundant arthropods in terrestrial ecosystems, where they provide ecosystem services. The effect of subterranean activity of ants on soil is well-studied, yet little is known about nest architecture due to the difficulty of observing belowground patterns. Furthermore, many species’ ranges span environmental gradients, and their nest architecture is likely shaped by the climatic and landscape features of their specific habitats. We investigated the effects of two temperature treatments on the shape and size of nests built by Formica podzolica ants collected from high and low elevations in the Colorado Rocky Mountains in a full factorial experiment. Ants nested in experimental chambers with soil surface temperatures matching the local temperatures of sample sites. We observed a plastic response of nest architecture to conditions experienced during excavation; workers experiencing a high temperature excavated deeper nests than those experiencing a cooler temperature. Further, we found evidence of local adaptation to temperature, with a significant interaction effect of natal elevation and temperature treatment on nest size and complexity. Specifically, workers from high elevation sites built larger nests with more tunnels when placed in the cool surface temperature treatment, and workers from low elevation sites exhibited the opposite pattern. Our results suggest that subterranean ant nest architecture is shaped by a combination of plastic and locally adapted building behaviors; we suggest that the flexibility of this ‘extended phenotype’ likely contributes to the widespread success of ants.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference53 articles.

1. Minter, N. J., Franks, N. R. & Brown, K. A. R. Morphogenesis of an extended phenotype: Four-dimensional ant nest architecture. J. R. Soc. Interface 9, 586–595 (2012).

2. Dawkins, R. The Extended Phenotype: The Long Reach of the Gene (Oxford University Press, 2016).

3. Tschinkel, W. R. The architecture of subterranean ant nests: Beauty and mystery underfoot. J. Bioecon. 17, 271–291 (2015).

4. Brian, M. V. & Brian, M. V. Production Ecology of Ants and Termites (Cambridge University Press, 1978).

5. De Bruyn, L. A. L. & Conacher, A. J. The role of termites and ants in soil modification: A review. Soil Res. 28, 55–93 (1990).

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3