Cold comfort: metabolic rate and tolerance to low temperatures predict latitudinal distribution in ants

Author:

Willot Quentin1ORCID,Ørsted Michael12ORCID,Malte Hans1,Overgaard Johannes1

Affiliation:

1. Department of Biology, Aarhus University, 8000 Aarhus C, Denmark

2. Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg E, Denmark

Abstract

Metabolic compensation has been proposed as a mean for ectotherms to cope with colder climates. For example, under the metabolic cold adaptation and the metabolic homeostasis hypotheses (MCA and MHH), it has been formulated that cold-adapted ectotherms should display both higher (MCA) and more thermally sensitive (MHH) metabolic rates (MRs) at lower temperatures. However, whether such compensation can truly be associated with distribution, and whether it interplays with cold tolerance to predict species’ climatic niches, remains largely unclear despite broad ecological implications thereof. Here, we teased apart the relationship between MRs, cold tolerance and distribution, to test the MCA/MHH among 13 European ant species. We report clear metabolic compensation effects, consistent with the MCA and MHH, where MR parameters strongly correlated with latitude and climatic factors across species’ distributions. The combination of both cold tolerance and MRs further upheld the best predictions of species' environmental temperatures and limits of northernmost distribution. To our knowledge, this is the first study showing that the association of metabolic data with cold tolerance supports better predictive models of species’ climate and distribution in social insects than models including cold tolerance alone. These results also highlight that adaptation to higher latitudes in ants involved adjustments of both cold tolerance and MRs, to allow this extremely successful group of insects to thrive under colder climates.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3