Development of seam tracking device in asynchronous tandem welding with arc sensing

Author:

Seo Bo Wook,Kim Dong-Yoon,Kim Cheolhee,Kim Seok,Cho Young Tae

Abstract

AbstractTandem welding is extensively used for welding large structures, such as ships and plants, for increased welding speed and volume. Seam tracking is essential because of a large amount of thermal deformation. However, in tandem welding, arc interference causes current and voltage to vary non-uniformly, leading to difficulties in seam tracking. Therefore, in this study, an optimal signal was identified for seam tracking in tandem welding and evaluated. To select the seam-tracking signal, an algorithm was developed that separates the welding signal into peak, average, and base. Based on the collected data, regression and signal-to-noise ratio analyses were performed to identify a suitable seam-tracking signal. To trace the welding line based on the selected signal, the welding signal was checked by weaving on the V-groove specimen. As a result, the current area difference of the welding signal generated between the left and right parts of the center of the V-groove could be calculated. An algorithm and equipment for seam tracking were constructed using the area difference of the welding current. Finally, the seam tracking system was verified by conducting an actual test using the equipment to which the algorithm was applied.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3