Author:
Wang Hai-Kun,Zhang Yang,Huang Mohong
Abstract
AbstractThis paper proposes a network model framework based on long and short-term memory (LSTM) and conditional random field (CRF) to promote Li-ion battery capacity prediction results. The model uses LSTM to extract temporal features from the data and CRF to build a transfer matrix to enhance temporal feature learning for long serialization prediction of lithium battery feature sequence data. The NASA PCOE lithium battery dataset is selected for the experiments, and control tests on LSTM temporal feature extraction modules, including recurrent neural network (RNN), gated recurrent unit (GRU), bi-directional gated recurrent unit (BiGRU) and bi-directional long and short term memory (BiLSTM) networks, are designed to test the adaptability of the CRF method to different temporal feature extraction modules. Compared with previous Li-ion battery capacity prediction methods, the network model framework proposed in this paper achieves better prediction results in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE) metrics.
Funder
The Scientific and Technological Research Program of Chongqing Municipal Education Commission
The Chongqing Research Program of Basic Research and Frontier Technology
The fellowship of China Postdoctoral Science Foundation
The Chongqing University of Technology
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献