Hydraulic system fault diagnosis decoupling method based on 2D time-series modeling and self-attention fusion

Author:

Wang Haicheng,Zhou Juan,Chen Hu,Xu Bo,Shen Zhengxiang

Abstract

AbstractHydraulic systems play a pivotal and extensive role in mechanics and energy. However, the performance of intelligent fault diagnosis models for multiple components is often hindered by the complexity, variability, strong hermeticity, intricate structures, and fault concealment in real-world conditions. This study proposes a new approach for hydraulic fault diagnosis that leverages 2D temporal modeling and attention mechanisms for decoupling compound faults and extracting features from multisample rate sensor data. Initially, to address the issue of oversampling in some high-frequency sensors within the dataset, variable frequency data sampling is employed during the data preprocessing stage to resample redundant data. Subsequently, two-dimensional convolution simultaneously captures both the instantaneous and long-term features of the sensor signals for the coupling signals of hydraulic system sensors. Lastly, to address the challenge of feature fusion with multisample rate sensor data, where direct merging of features through maximum or average pooling might dilute crucial information, a feature fusion and decoupling method based on a probabilistic sparse self-attention mechanism is designed, avoiding the issue of long-tail distribution in multisample rate sensor data. Experimental validation showed that the proposed model can effectively utilize samples to achieve accurate fault decoupling and classification for different components, achieving a diagnostic accuracy exceeding 97% and demonstrating robust performance in hydraulic system fault diagnosis under noise conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3