Author:
Karimi-Maleh Hassan,Karimi Fatemeh,Orooji Yasin,Mansouri Ghobad,Razmjou Amir,Aygun Aysenur,Sen Fatih
Abstract
AbstractA highly sensitive electrocatalytic sensor was designed and fabricated by the incorporation of NiO dope Pt nanostructure hybrid (NiO–Pt–H) as conductive mediator, bis (1,10 phenanthroline) (1,10-phenanthroline-5,6-dione) nickel(II) hexafluorophosphate (B,1,10,P,1,10, PDNiPF6), and electrocatalyst into carbon paste electrode (CPE) matrix for the determination of cysteamine. The NiO–Pt–H was synthesized by one-pot synthesis strategy and characterized by XRD, elemental mapping analysis (MAP), and FESEM methods. The characterization data, which confirmed good purity and spherical shape with a diameter of ⁓ 30.64 nm for the synthesized NiO–Pt–H. NiO–Pt–H/B,1,10, P,1,10, PDNiPF6/CPE, showed an excellent catalytic activity and was used as a powerful tool for the determination of cysteamine in the presence of serotonin. The NiO–Pt–H/B,1,10, P,1,10, PDNiPF6/CPE was able to solve the overlap problem of the two drug signals and was used for the determination of cysteamine and serotonin in concentration ranges of 0.003–200 µM and 0.5–260 µM with detection limits of 0.5 nM and 0.1 µM, using square wave voltammetric method, respectively. The NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE showed a high-performance ability for the determination of cysteamine and serotonin in the drug and pharmaceutical serum samples with the recovery data of 98.1–103.06%.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Karimi-Maleh, H., Biparva, P. & Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron. 48, 270–275 (2013).
2. Healy, J. A trial of cystamine in radiation sickness. Br. J. Radiol. 33(392), 512–514 (1960).
3. Vecsei, L., Kovacs, G., Faludi, M., Bollok, I. & Telegdy, G. Dose-related effects of cysteamine treatment on hypothalamic and striatal dopamine, noradrenaline and serotonin neurotransmission. Acta Physiol. Hung. 66(2), 213–217 (1985).
4. Szabo, S. et al. Biochemical changes in tissue catecholamines and serotonin in duodenal ulceration caused by cysteamine or propionitrile in the rat. J. Pharmacol. Exp. Ther. 240(3), 871–878 (1987).
5. Sharma, S., Singh, N., Tomar, V. & Chandra, R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens. Bioelectron. 107, 76–93 (2018).