Development of a Co3O4/rGO Modified Electrochemical Sensor for Highly Sensitive Riboflavin Detection

Author:

Uwaya Gloria Ebube1,Sappidi Praveen Kumar2,Bisetty Krishna1ORCID

Affiliation:

1. Department of Chemistry Faculty of Applied Sciences Durban University of Technology P. O Box 1334 Durban 4000 South Africa

2. Department of Chemical Engineering Indian Institute of Technology Jodhpur Jodhpur 342030 India

Abstract

AbstractThe monitoring of antioxidants is crucial to prevent damage caused by reactive oxygen species (ROS). In this study, we introduce an innovative electrochemical sensor tailored for detecting riboflavin (RF), a powerful antioxidant. The sensor was developed by modifying a gold electrode (AuE) with cobalt oxide (Co3O4) and reduced graphene oxide (rGO). The resulting nanocomposite‐modified electrode (AuE/Co3O4‐rGO) exhibited a substantial surface area of 0.41 cm2 in the redox probe, leading to an enhanced RF peak characterized by remarkably low charge transfer resistance (1.61 KΩ) and a high exchange current density (18.6 μA/cm2). Under optimized conditions, the sensor achieved a limit of detection (LOD) for RF at 1.30 μM, over a concentration range of 6.5–42.2 μM. These results highlight the sensor's potential applicability in real‐world scenarios, including the analysis of milk and pharmaceutical samples. A kinetics study revealed that the electrochemical reaction involving RF is adsorption‐controlled, emphasising the critical role of surface interactions. The modified electrode's interaction with RF significantly influences overall reaction kinetics. These findings were further supported by density functional theory (DFT) calculations and molecular simulations. Our nanocomposite‐modified electrode provides valuable insights into the atomistic interactions governing sensor performance, advancing the field of electrochemical sensing for antioxidants like riboflavin.

Funder

Durban University of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3