Synthesis of mesoporous silica post-loaded by methyl eugenol as an environment-friendly slow-release bio pesticide

Author:

Chen Huayao,Chen Lishen,Shen Zhichuan,Zhou Hongjun,Hao Li,Xu Hua,Zhou Xinhua

Abstract

AbstractSalicylaldimine, furfuralimine and benzaldehyde imine were adopted to modify mesoporous silica (MCM) respectively denoted as Sal-MCM, Fur-MCM and Ben-MCM before loading methyl eugenol (Me) for pesticide delivery. Me was adsorbed by Schiff base mesoporous silica without destructing regular hexagonal pore structure verified by the characterization results. DSC result implied that Me in amorphous state which was distributed in the pores of the mesoporous silica. The loading content of Me-Sal-MCM, Me-Fur-MCM and Me-Ben-MCM 67.89%, 73.34% and 73.84% which was higher than Me-MCM without modification (67.35%).Because the electrostatic interaction and π-π interaction between Schiff base and Me strengthened the adsorption capacity of the carrier. And the electrostatic interaction played a more important role in interaction between Me and Schiff base modified mesoporous silica. As a result, Schiff base modified sustained release system also has significantly longer sustained release time with a sequence of Me-Sal-MCM > Me-Ben-MCM > Me-Fur-MCM in release speed in negative correlation with the electric potential sequence. The behaviors of their sustained release performance can be fitted by First order kinetic model before Schiff base modification. After modification, their sustained release behaviors were consistent with Korsmeyer-Peppas equation with non-Fickian diffusion mechanism indicating that main impact on the release process after modification was no longer mainly controlled by the difference of the concentration. Finally, the highest lure rate of the modified MCM (Me-Fur-MCM) equals to the 73% of the pure Me due to its highest BET surface area and strongest interaction with Me among the three Schiff base modified samples. Therefore, the environment-friendly slow-release bio pesticide with long service life was prepared to reduce the damage on the environment caused by pesticide.

Funder

Natural Science Foundation of Guangdong Province

Guangzhou Municipal Science and Technology Project

Guangzhou Science and Technology Program key projects

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3