Mitigation of water stress in broccoli by soil application of humic acid

Author:

Ibrahim Ehab A.,Ebrahim Noura E. S.,Mohamed Gehan Z.

Abstract

AbstractThe main challenge to plant productivity is water scarcity, which is predicted to get worse with climate change, particularly in arid and semi-arid areas. Humic acid could improve plant tolerance to mitigate drought damage, which is an effective strategy to improve crop production and agriculture sustainability under limited water conditions in these regions, but its effective application rates should also be established. Thus, two field experiments were carried out at the Qaha Vegetable Research Farm in Qalubia Governorate, Egypt, during the two seasons of 2020–21 and 2021–22 on clay soil. The present study investigated the effect of three rates of humic acid application (0, 4.8, and 9.6 kg ha-1) on growth, yield, and quality of broccoli cv. Montop F1 hybrid under well-watered and drought conditions. Drought was induced by missing alternate irrigation. Soluble humic acid as potassium-humate was applied three times with irrigation water at the time of the first three irrigations of drought treatment. Water-stressed plants had a decrease in growth, yield, leaf chlorophyll, and nutrient content, while they showed an increase in the contents of leaf proline and curd dry matter and total soluble solids as well as water use efficiency, in both seasons. Soil application of humic acid was effective in mitigating the adverse effects of water deficit stress on the growth and yield of broccoli. Water-stressed plants had the highest WUE value (9.32 and 9.36 kg m3−1 in the first and second seasons, respectively) when the maximal humic acid rate was applied. Humic acid at a high level (9.6 kg ha−1) had the most promising results and represents an opportunity that must be applied to improve broccoli yield and its production sustainability in arid and semiarid regions.

Funder

Agricultural Research Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3