Physiological and biochemical alterations in Vigna rdiate L. triggered by sesame derived elicitors as defense mechanism against Rhizoctonia and Macrophomina infestation

Author:

Kalaivani Kandaswamy,Senthil-Nathan Sengottayan,Stanley‑Raja Vethamonickam,Vasantha-Srinivasan Prabhakaran

Abstract

AbstractImproving agricultural products by the stimulation of plant growth and defense mechanisms by priming with plant extracts is needed to attain sustainability in agriculture. This study focused to consider the possible improvement in Vigna radiata L. seed germination rate, plant growth, and protection against the natural stress by increasing the defense mechanisms through the incorporation of Sesamum indicum phytochemical compounds with pre-sowing seed treatment technologies. The gas chromatography coupled with mass spectroscopy (GC–MS) analysis revealed that the methanol extract of S. indicum leaf extract contained eight major bioactive compounds, namely, 2-ethylacridine (8.24%), tert-butyl (5-isopropyl-2-methylphenoxy) dimethylsilane (13.25%), tris(tert-butyldimethylsilyloxy) arsane (10.66%), 1,1,1,3,5,5,5-heptamethyltrisiloxane (18.50%), acetamide, N-[4-(trimethylsilyl) phenyl (19.97%), 3,3-diisopropoxy-1,1,1,5,5,5-hexamethyltrisiloxane (6.78%), silicic acid, diethyl bis(trimethylsilyl) ester (17.71%) and cylotrisiloxane, hexamethyl-(4.89%). The V. radiata seeds were treated with sesame leaf extract seeds at concentrations 0, 10, 25, 50, and 100 mg/L. Sesame leaf extract at 50 and 100 mg/L concentrations was effective in increasing the germination percentage and the fresh and dry weights of roots and shoots. The increased peroxidase activity was noticed after treatment with S. indicum extract. In addition, disease percentage (< 60%) of both fungal pathogens (Rhizoctonia and Macrophomina) was significantly reduced in V. radiata plants treated with 100 mg/L of sesame leaf extract. These results revealed that physiochemical components present in S. indicum mature leaf extract significantly enhanced growth and defense mechanism in green gram plants.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3